ABSTRACT: The morphology of the adult farmed African catfish -Clarias gariepinus- a prominent omnivorous cultivable species in Nigeria was investigated. It revealed cornified horny plates lining the buccal surfaces of the lips. The tongue was not free moving, and the oesophagus was a narrow tube connecting the oropharyngeal cavity to the stomach with no valve or constriction separating it from the latter. Histologically, the cavity wall was lined by stratified squamous epithelium containing eosinophilic club cells, mucous cells and taste buds. The laminar propria contained dense collagen fibres. No taste bud was seen on the tongue suggesting it non involvement in food selection through gustation unlike the cavity wall which contained taste buds. The oesophagus was lined by stratified mucous epithelium containing club cells. Histochemistry revealed the presence of neutral, acid and combination of the two. The large extent of oesophageal mucification indicates need for mucin lubrication of food since teleost is known to lack salivary glands and also an adaptation to ingestion of varied feed.

KEY WORDS: Oropharyngeal Cavity, Oesophagus, Histology, Histochemistry, Mucin, African Catfish.
INTRODUCTION

The form and positions of the mouth, denta-
tion on the jaws and oropharynx; and the gill rakers show close relation with the mode of feeding and kinds of food (1, 2, 3). In the Chondrostoma nasus L., an herbivorous fish, the ventral mouth position predisposes the fish to help up food overgrowing submerged stones (4).

The lips, the primary food procuring organ assumes different forms and may be adhesive in some teleosts (5). Girigis (6, 7) observed a stratum corneum and even horny protuberances on the lips of the herbivorous bottom feeder Labeo horie. Two sharp horny cutting edges in the upper and lower borders of the mouth immediately inside the lips enable the fish to take up food. Horny plates on the inner face of the lips in Noemacheilus barbatulus L. are used in trituration (8). The granular processes on the very board queer lips of bottom feeding Pseudogobio esocinus are important in food finders (9). Bransons and Hake (10) observed the rich vascularization on the lips (and oropharyngeal) tissues of Piaractus nigrigripinis, indicating a respiratory function in this fish which inhabits water deficient in oxygen. The oropharynx bears a variety of specialized organs for specific functions. The organs include- lamellar organ, buccal valves, tongue, pharyngeal pads and epibranchial organ (11, 12, 13).

The oesophagus is usually a short and narrow tube connecting the oropharynx to the stomach (14, 15, 16, 17). It is lined by stratified cuboidal to simple columnar epithelium with mucus cells and communicates with the swim bladder through the pneumatic duct in the rainbow trout Salmo gairdneri (18), but a pseudostratified epithelium with PAS and AB positive mucous cells has been reported in the Leporinus taenio-fasciatu (19). The oesophagus of walking catfish Clarias batrachus according to Raji and Norouzi (20), presents numerous deep longitudinal folds, lined by few layers of stratified squamous epithelium with numerous superficial mucous cells that changed to columnar epithelium at the end of oesophagus.

African catfish - Clarias gariepinus, an omnivorous freshwater fish feeding on zooplanktons, plant debris, other smaller fishes and freshwater animals. It can cannibalize on other catfish in the same pond. It is a popular delicacy in Nigeria. It is a prominent culture species because of its fast growth rate and resistance to diseases and stress factors like over-stocking and poor water quality. It is distributed mainly in fresh waters of Africa, hence the name African catfish, although it is also seen in Asia. It can also thrive in muddy water. It is named ‘catfish’ because they posses prominent barbels which resemble cat’s whiskers. It has a slender body, flat bony head that is dorsoventrally compressed and broad terminal mouth with four barbels. The pectoral fins have spines.

Despite the increasing interest in the commercial production of the African catfish, there is a dearth of information on the morphology of its basic digestive tract, unlike most teleosts in available literature. In this paper we present our findings on the anatomy of the oropharyngeal cavity and oesophagus of the farmed African catfish. The knowledge will enhance our understanding of its adaptive digestive physiology.

MATERIALS AND METHODS

Twenty adult African catfish sourced from a commercial aquaculture in Eastern Nigeria were used for the study. They weighed an average of 900g and measured a standard body length of 45cm in length. The fish were euthanized with chloroform. The oropharyngeal cavity was cut open bilaterally at the junction between the mandible and maxilla. The body cavity was cut open through the mid ventral surface and the alimentary tract dissected out. The specimen under study - the oropharyngeal wall and oesophagus were excised and immediately fixed in 10% neutral buffered formalin.

The tissue was passed through graded ethanol, cleared in xylene, impregnated and embedded in paraffin wax. Sections 5 - 6µm thick were obtained with Leitz microtome model 1512. They were stained with haematoxylin and eosin for light microscopy examination (21). Mucins were demonstrated using Alcian blue (AB) at pH 2.5 (22, 23) and Periodic acid Schiff (PAS) with and without prior digestion with diastase (24, 25). In addition, the PAS technique was employed in combination with AB for neutral and acid mucin (21). Photomicrographs were taken with - Motican 2001 camera (Motican UK) attached to Olympus microscope.

RESULTS

Grossly, the oropharyngeal cavity was bounded dorsally by the palate and ventrally by the mandibular bone, cranially by upper and lower lips. The palate that formed the roof had three horny plates, one cranial plate and two caudal plates. The cranial plate was semilunar while the two caudal plates were separated by a thickened mucous membrane (Fig.1). The horny plates on the mandible which formed the floor of the mouth were separated by thickened mucous membrane (Fig.2). The floor presented a tongue that was fixed (Fig.2). At caudal end of the dorsal wall of the oro-pharyngeal cavity were located two elevated round structures referred to as the pharyngeal pads. They were located about 2cm to the aditus oesophagus. The oesophagus was a short narrow tube connecting the oro-pharyngeal cavity to the stomach. On entering the coelomic cavity it coursed caudo-dorsally to the liver and entered
the stomach. There was no marked constriction separating the oesophagus from the stomach except the enlarged nature of the later.

HISTOLOGY

The tongue: the tunica mucosa presented stratified squamous epithelium containing eosinophilic club cells (CC) and mucous cells (MC). Note collagen fibres (CF) in the lamina propria. H.&E. X 400.

Oropharyngeal wall: The mucosa was lined by stratified mucous epithelium containing large eosinophilic club cells, and occasional taste buds (TB). Note collagen fibres (CF) in the lamina propria. MC- mucous cells. H. & E. X 400.
Oesophagus: the longitudinal fold mucosa was lined by stratified mucous epithelium containing eosinophilic club cells (Fig. 7, 8). The mucous cells were PAS positive (Fig. 9), AB positive (Fig. 10), cell with varying quantities of neutral and acid mucins (Fig. 11, 12). The core of longitudinal folds was of densely packed collagen fibres. The lamina propria-submucosa contained collagen fibres, and bundles of striated muscle in mostly longitudinal orientation (Fig. 13). The tunica muscularis was of striated muscles mostly in circular orientation interspersed with longitudinal muscle bundles. Tunica adventitia was entirely of loose connective tissue containing blood vessels.

DISCUSSION

The oropharyngeal cavity in conjunction
with the branchial arches filter and keep the food for proper trituration by the pharyngeal pad in the adult. This has been documented also in *Odontesthes bonariensis* (26). The wall of the oropharyngeal cavity of the adult African catfish presented epithelium of stratified mucus type. This epithelium has a protective function (16, 19). The dense collagen bundle seen in the lamina propria-submucosa region maybe analogous to stratum compactum reported in some teleost, that support, strengthen and preserve the entirety of gut wall against sudden and violent extension (27,28). The skeletal muscles may be involved in voluntary trituration. The presence of taste buds in the oropharyngeal wall as observed in this study has also been reported in *Odontesthes bonariensis* (26), and their presence suggest that the oropharyngeal wall may be involved in food selection or rejection by gustomation (29,30). The mucous cells produce mucus which is involved in lubrication and defense against pathogens (19,31). The adult oropharyngeal wall showed the presence of acid and neutral mucin, but the acid predominated showing more bluish colour in combined AB-PAS procedure. This may be explained by the need for acid mucin to act as protective coat to invading agents in the cavity, the tongue presented similar reaction (26). The club cells present in teleost have been described as having a role in flight of fish from danger by suggested to play a role in regulating the pH of the stomach (15). The club cells are involved in non-specific defense mechanism (32). The presence of abundant mucous cells observed have also been reported and signifies the large requirement of mucin for lubrication during swallowing and increase in viscosity related to protection against abrasion and pathogens, as teleosts lack salivary gland (40, 42, 43). The oesophageal mucins seen were both acidic and neutral, but the acidic mucin was slightly higher indicating need for more protection against pathogenic agents, prevention of damage to gut epithelium, and acting as lubricant to fibre-rich materials being an omnivorous fish (19, 43, 46). The neutral mucins in the esophagus have been associated with pre-gastric digestion (47). The purple colouration seen in some longitudinal folds signifies the presence of both acid and neutral mucin in equal quantities (18, 26, 41). The esophagus of *Sparus aurata* presented only neutral mucins (48). In the *Sola sola* only acid mucopolysaccharides were seen in oesophageal mucous cells. In the *Salmo gairdneri* the anterior segment of the esophagus after AB/PAS procedure presented equal neutral and acid mucin, middle mostly purple while distal stained purple mostly (18). Raji and Norouzi (20) reported the presence of both neutral and acid mucin in the esophagus of both *Clarias batrachus* and *Serrasalmus natterieri*. Esophageal mucin has been suggested to play a role in regulating the pH of the stomach (15). The club cells are involved in non-specific defense mechanism (32). The presence of mostly circularly oriented striated muscle has been reported (20, 33), and is associated with ability to voluntarily reject unwanted material (44). The lymphocytes seen are involved in specific defense mechanism (16, 18). Absence of taste bud in the oesophageal epithelia as observed in this study is located directly caudal to the pharynx, and extends from the most caudal gill arch to the cranial opening of the stomach. This observation has been reported by Hamlin (38) in the work on haddock, *Melanogrammus aeglefinus*. The longitudinal folds of the mucosa present in the esophagus has been reported and provide the necessary distensibility during food intake (39, 40, 41).
study has been reported (15, 16, 19, 20, 26, 40), but taste buds presence have been reported in some teleosts oesophagus (18, 29). The varying shapes of mucous cells in the esophagus seen here have been reported in other teleosts (15, 18). The presence of only circular striated muscle as seen in adult has been reported (45). This circular muscle may help produce uniform muscle contraction, thereby producing a syncytium-like effect. Adventitia with loose connective tissue and adipose tissue seen in this region has been reported in literature also (16).

In conclusion, the oropharynx is adapted for grasping large food materials for grinding by the cornified plates on the lips. The broad dorsoventrally compressed head with a wide mouth will engulf preys in the habitat since the tongue lacks taste buds. The acid mucin present will help in fight against bacteria while the club cells will protect against non-specific agents by fight or flight. The large quantity of mucin in the oesophagus will help lubricate the tract since salivary gland is absent. It may also be an adaptation for varied feed in restricted concrete pond. The neutral mucin may be involved in pre-gastric digestion. From this study, the African catfish is adapting to intensive aquaculture through these cells and their functions. This study will fill the knowledge gap and help pathologist in fish disease diagnosis as the will serve as baseline data for this region.

REFERENCES

post-hatching ontogeny. Journal of Fish Biology

